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Abstract

This paper presents an alternate approach for the generation of volumetric grids

for supersonic and hypersonic 
ows about complex con�gurations. The method uses

parametric two-dimensional block face grid de�nition within the frame work of GRID-

GEN2D. The incorporation of face decomposition reduces complex surfaces to simple

shapes. These simple shapes are recombined to obtain the �nal face de�nition. The

advantages of this method include the reduction of overall grid generation time through

the use of vectorized computer code, the elimination of the need to generate match-

ing block faces, and the implementation of simpli�ed boundary conditions. A simple

axisymmetric grid is used to illustrate this method. In addition, volume grids for two

complex con�gurations, the Langley Lifting Body (HL-20) and the Space Shuttle Orbiter

are shown.
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Introduction

A large portion of the engineering (i.e. wall clock) time required to do a CFD computa-

tion about complex aerodynamic con�gurations is consumed in the grid generation process.

Currently, three-dimensional volume grid generators available in the public domain o�er a

variety of options for grid generation for highly complex aerodynamic con�gurations. To

simplify the grid generation process, 3D grid solvers usually rely on multiple block volume

decompositions. Each block then requires simple algebraic/elliptic grid solutions. Although

this approach has been used extensively, it has some inherent disadvantages.

The most signi�cant disadvantage to multiple block volume decompositions is the neces-

sity to generate matching block face boundaries which are required to generate the initial

grid using three-dimensional trans-�nite interpolation1 (3DTFI). The requirement is that

all six faces of a grid block volume must be previously de�ned by two-dimensional para-

metric surface grids. Typically, for inviscid Computational Fluid Dynamic (CFD) solutions,

3DTFI produces an adequate volume grid. However, for viscid CFD solutions orthogonal-

ity is usually required at the wall of a con�guration. The 3DTFI method of volume grid

initialization does not guarantee orthogonal grid lines where appropriate (i.e., at the wall,

symmetry planes, etc.). To obtain the required orthogonality, an elliptic solution of Poisson's

equations is used. Popular algorithms in Poisson solvers, utilized for slope continuity across

matching block interfaces, signi�cantly alter the original de�ning interface surface (Fig. 1).

The popular EAGLE2 and GRIDGEN3D3 codes, compute a solution between two blocks

to determine the \correct" location of a matching boundary. Utilizing this solution results

in a di�erent location and distributions of grid points on a matching block interface (Fig.



1). Thus, for multiple block decompositions, the interfaces of matching blocks have to be

initially de�ned, but the time used to generate them is lost when they are altered by the

elliptic solver.

The inability to e�ectively use vectorized code is a second disadvantage. The short

vector length and coded conditionals associated with multiple block decompositions degrade

the performance of vector processors. Also, the memory management techniques required

to locate multiple blocks in array space and locate points required to compute the location

of the matching interface after each solver iteration, further limits the e�ectiveness of vector

processors.

A third disadvantage to using multiple block topologies is the possibility of non-linear

and cyclic oscillations in grid point movement residuals leading to elliptic solver divergence.

The unstable nature of these oscillations can be the result of several categories. These

categories will be further identi�ed later, as well as the techniques for alleviating the induced

oscillations.

The fourth disadvantage to using multiple blocks is the necessity to use a surface grid

generator to obtain the matching block interface. As the complexity of the con�guration

increases so does the matching block interface. For the Shuttle Orbiter, these surfaces can

be located between the con�guration's wall and the outer shock boundary as well as vertical

tail and fuselage intersections. Simple surfaces obtained from planar cuts or TFI usually do

not produce adequately smooth interface surfaces. Rather, complex surface generators have

to be used to obtain these matching block interface surfaces which adds more time to the

grid generation process.

In order to generate three-dimensional volume grids for highly complex con�gurations,
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Figure 1: Di�erences in grid distributions on a matching boundary surface from before

(initial grid) and after (converged solution) running an elliptic 3D volume grid generator.



it is advantageous to use a blocking topology that requires the least number of blocks. This

paper presents an alternate approach to developing and constructing single block three-

dimensional volume grids about complex aerodynamic vehicles explicitly for CFD. The tech-

nique is di�cult compared to multiple block decompositions, but results in a signi�cant

savings of nearly 50 percent in the engineering time required to develop a grid for a given

con�guration. A simple sphere-cone-cylinder-
are con�guration is used to illustrate the ad-

vantages for single block volume grid re�nement. Volume grids for the Langley Lifting Body

(HL-20) and full Space Shuttle Orbiter are presented as illustrations of grids for complex

con�gurations created using this approach.

Comparison of Blocking Strategies

Single Block

Typically, for a single block volume grid topology, a C type grid is used for both wings

and fuselage. The only strategy for generating the volume grid is the development of para-

metrically two-dimensional grids on the six block boundaries (faces). A simple ellipsoidal

(sphere-cone-cylinder-
are) con�guration is utilized in this paper to illustrate the technique.

The overall strategy for generating the six individual faces of the single block can be found

in the 
owchart (Fig. 2) which is used because it embodies the grid design philosophies of

the GRIDBLOCK/GRIDGEN2D3 codes. Basically, the con�guration is �rst broken into the

six individual faces that represent the single block 
ow�eld structure. Each face is broken

into individual domains, as required, to represent some, if not all of a face, i.e. subface

decomposition. Then each individual subface is generated utilizing a variety of algebraic

and elliptic methods available within the GRIDGEN codes. This task is completed in an



interactive workstation environment where the user can visually and accurately place and

cluster grid points.

After the subfaces and subsequent complete faces are generated, the boundary surfaces

are transferred to a supercomputer where a three-dimensional elliptic solver is used to gen-

erate a volume grid. The elliptic solvers usually employ 3DTFI for grid initialization and a

Poisson solver for elliptic smoothing and control.

Generally, the most complicated surface to generate is the con�guration's surface. For

the example case, illustrated in �gure 3, the surface has been broken into four individual

subfaces. The �rst subface represents the nose of the con�guration. The second represents

the conical portion, the third a cylindrical part, and the fourth is represented by the 
are.

Construction is carried out through a series of algebraic and elliptic solutions to obtain a

slope continuous set of grid lines over the entire surface. All other faces are constructed

similarly, using the subface decomposition to simplify the surfaces.

After the faces of the single block structure are de�ned by combining the various surface

grids, the Three-Dimensional Multi-block Advanced Grid Generation System4 (3DMAGGS)

was used to generate the volume grid. The solver required 680 seconds of Cray-II CPU

(Central Processing Unit) time to complete 400 iterations and a �nal grid point movement

indicative of a converged solution. Figure 4a shows the RMS (root-mean-square) residual grid

point movement for each iteration and �gure 4b shows the RMS residual of the corrections to

the orthogonality source terms for each iteration. The solution is considered to be converged

when the average correction of the orthogonality source terms for each grid point is more

than four orders of magnitude less than the largest orthogonality source term for the entire

volume grid. The overall grid generation time, including the de�nition portion, and the
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Figure 3: Subface decomposition of the con�guration's surface (wall).



elapsed time from running the elliptic solver on a Cray-II, was 2 hours.

Multiple Block

The multiple block decomposition was constructed according to �gure 5. The faces

of each sub-block were generated in the same way that the faces of the single block grid

were generated. However, the grid points on either side of the matching block interfaces

were obtained in a di�erent manner. These grid points had to be generated such that slope

continuous grid lines would result across the matching block interface. Within the GRIDGEN

framework, slope continuous lines are obtained by �rst copying the set of subfaces into a

single face. This single face is solved as a complete entity resulting in slope continuity at

the matching edges. Then the proper subfaces of the single face are inserted back into

their original positions. The steps required to enhance slope continuity across matching

boundaries and the need to match face boundaries increases the time required to de�ne a

multiple block grid over that required for a single block grid. For the example case, the

multiple block grid required 31
2
hours to de�ne the block boundaries while the single block

only required 11
2
hours.

The multiple block example case required 820 seconds of Cray-II time to obtain 400

iterations of the 3D elliptic solver. Figure 6a shows the grid point movements for each block.

An inspection of the maximum point movement for the multiple block volume grid|where

the maximum movement for any of the 3 blocks is compared to the single block maximum

point movements|shows that the multiple block movement residuals are slightly higher at

the end of 400 iterations. Comparing the maximum grid-point movements between the 2

di�erent block volume grids, �gure 4a for the single block continuously converges after 15
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Figure 4: Elliptic solver convergence history for the single block example con�guration.
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Figure 5: Multiple block decomposition of the example con�guration.



iterations, but the multiple block, shown in �gure 6a, diverges slightly during the �rst 40

iterations then starts to converge. Figure 6b shows the RMS of the orthogonality source

term corrections. Again, as indicated for the single block grid, the corrections are about

four orders of magnitude smaller than the largest orthogonality source term, which is an

indication of a converged solution. Although the grid is converged, the solver required 21

percent more CPU time to generate a multiple block volume grid. Figure 7 shows a set of

cross-sectional planes from the multiblock grid construction. The engineering time required

to generate the three block volume grid was 41
2
hours, 225 percent over the time required to

construct a single block grid, and both exhibited the same grid quality as shown in �gure 8.

A break down of the time required for elements of the grid generation process for each

gridding strategy is shown in �gure 9. Although the single block method requires less time

for all elements, the major di�erence in the two techniques is the time required for matching

block interface construction for the multiple block approach.
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Figure 6: Elliptic solver performance for the multiple block example con�guration.
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A grid solution is considered to be converged when the movement of grid points in the

volume per iteration is small for relaxation rates of 0.9 to 1.1. During the solution process

for both the single block and multiple block grids, elliptic solver instability, as indicated

by non-linear oscillations in the grid-point movement residuals, became a problem. This

instability could be the result of several factors, which may be any or all of the following:

[1] Large relaxation rates for grid-point movement.

[2] Regions of strong surface gradients (i.e. high curvature and discontinuities).

[3] Regions of tight cell spacing near a surface where orthogonality is being enforced.

[4] Using forward or backward di�erences at a matching boundary.

Typically, this instability is characterized by an unbounded grid-point movement from iter-

ation to iteration. The new computed location for the grid point can be controlled directly

by limiting the amount of change i.e. relaxation rate, in the PSOR algorithm.

The other elements that may contribute to elliptic solver instability are more complex,

making it di�cult to counteract their a�ects. For multiple block grids, the computation

at matching block interfaces poses the most di�culty because the interfaces usually occur

in regions of surface geometry changes. These surface geometry changes typically occur at

abrupt changes in surface curvature. When derivatives are computed at matching boundaries

where the surface changes occur, forward or backward di�erences have to be used because

the interface is the limit of a parametric direction. The forward and backward di�erences

usually magnify the surface gradients as well as tight grid spacings which tends to produce

orthogonality source-terms that change rapidly from point to point in either of the two para-



metric directions along a surface. Large 
uctuations in the orthogonality source-terms used

in Poisson's equations tend to cause grid-point movements to 
uctuate. To test this phe-

nomenon, a planar-surface grid was extracted from the single block solution for the multiple

block grid, which extended from the intersection of the cylinder and 
are to the outer 
ow

domain. This de�ned the matching boundary interface for the multiple block grid. The

multiple block volume grid was elliptically solved with identical cell sizes required for or-

thogonality, and the interface was allowed to 
oat. Divergent cyclic oscillations in grid-point

movement per iteration occurred at the wall of the con�guration near the interfacing sur-

face. Only the derivatives had changed between the two blocking topologies, suggesting that

instability occurred when the central di�erencing, which smears out wall-surface gradients,

was switched to the one-sided di�erencing.

Hence, matching block interfaces in regions of large surface gradients, and tight cell

spacings tend to cause elliptic solver instability. The instability caused by these surface and

grid spacing e�ects can be alleviated by averaging the orthogonality source-terms in the

parametric direction and increasing the cell spacings at the wall. Both of these techniques

were used for the multiple block volume grids generated for this paper.

Elliptic solver instability may also be caused by con
icting forcing functions near the

matching boundary. In 3DMAGGS, slope continuity across matching boundaries is obtained

using weak orthogonality controls on the matching interface. These orthogonality bound-

ary conditions add another source-term to Poisson's equation for points near the matching

boundary, and may con
ict with the orthogonality speci�cation at the con�guration's sur-

face. To reduce the e�ects of adding the source-term to obtain slope continuity, the decay rate

of the source-terms into the volume interior was increased, which maintained near matching



boundary slope continuity and reduced the con
ict on the interior of the volume grid.

A comparison of the single block elliptic solver residuals to those for the multiple block

grid, shows the source-term correction RMS for the multiple block grid does not drop as

quickly as that for the single block grid. The di�erence in convergence rate may be a result

of transients created by grid initialization in the solution of the multiple block grid at the

beginning of the solution. An inspection of the source-term correction residuals for the

multiple block grid indicates transients characterized by cyclic oscillations in the beginning

of the solution. But as the solution progresses the oscillations disappear and the multiple

block grid continues to converge as evidenced by the decreasing values of the grid-point

movement RMS residual. Although the single block grid has four spikes in the source-

term correction convergence history, these transients are minor compared to the source-term

oscillations encountered in the multiple block grid solution. Damping of these transients in

the single block grid was quick, but the multiple block grid was a�ected by the oscillations

over a larger number of iterations. These transients appear to be the result of tight spacing of

grid points near the surface which are required for orthogonality control and were alleviated

by increasing the cell sizes.



Application to Complex Geometries

Shuttle Orbiter

In this section, the application of single block grid construction for the Shuttle Orbiter

will be demonstrated. In addition, a multiple block Orbiter grid has been constructed for

comparison to the single block grid.

Single Block Orbiter:

The single block construction of the Shuttle Orbiter includes all of the geometry, except

the engine nozzles. This complex con�guration was constructed with the main surface and

wing of the Shuttle as one face and with the vertical tail embedded in the leeside symmetry

plane. The subface decomposition of the surface as shown in �gure 10, was designed to

isolate various portions of the Orbiter's surface based on surface grid requirements. These

include the canopy region, the leading edge of the wing, the Orbital Maneuvering System

(OMS) pods, the vertical tail, the leeside intersection between the wing and the fuselage,

and the impact location of the bow shock onto the wing at high angles of attack. The leeside

symmetry plane was decomposed into four subfaces to account for the vertical tail (subface

2) and its intersection with the fuselage (Fig. 11a). The exhaust plane of the 
ow�eld

was broken into three subfaces due to the highly complex nature of the de�ning edges (Fig.

11b). The only other di�culty encountered was lining up the grid point locations on the

outer boundary (shock wave) surface such that the grid lines from the Orbiter's surface

would be nearly straight and orthogonal to the con�guration wall. The construction of the

blocking and grid de�nitions of each face accounted for 30 hours.

After the faces were constructed, elliptic grid generation proceeded smoothly. The only
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grid-point movement oscillations then tended to cause elliptic solver divergence occurred at

the intersection of the vertical tail and the fuselage. To alleviate the oscillations the elliptic

solver's orthogonality source-terms were averaged for discontinuous surface regions. The

volume grid solution required 14.2 CRAY-II CPU hours utilizing 6800 iterations. Figure

12 shows the residual grid point movements for each iteration and �gure 13 shows the

orthogonality source term residuals for each iteration. Evaluating the elliptic solver residuals

in both �gures 12a and 12b, it is evident that the grid point movement jumps at certain

intervals, indicated by the circled regions. These regions are restarts of the 3DMAGGS code,

with di�erent relaxation parameters. Due to previous calculations, experience has indicated

that the solver is unstable with large initial relaxation parameters (on the order of 0.1 to

1.0) for this computation. The solutions were initially started with relaxation parameters of

0.01, then increased to its maximum of 0.4. This under relaxation rate was the closest to

neutral stability, allowing the quickest convergence without induced instability.

A representative set of cross-sectional grid planes are shown in �gure 13, with an expanded

view of the three cross-sections in �gures 14, 15, and 16, respectively. The inset in �gure 16,

shows the vertical tail has bi-directional viscous spacing on it. The corner where the fuselage,

vertical tail and leeside symmetry plane meet was the area that limited the relaxation rate

for the entire volumetric solution. The solver was limited due to the viscous spacing required

to model both the boundary layer at the fuselage surface and the vertical tail surface. The

entire grid generation process consumed 80 hours of engineering time, as shown in �gure 17.
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Figure 12: Elliptic solver performance for single block Shuttle Orbiter.
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Figure 13: Single block volume grid for Shuttle Orbiter.



Figure 14: Cross-section #1 of the single block volume grid for Shuttle Orbiter.



Figure 15: Cross-section #2 of the single block volume grid for Shuttle Orbiter.
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Figure 16: Cross-section #3 of the single block volume grid for Shuttle Orbiter.
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Multiple Block Orbiter:

The multiple block volume grid construction was more tedious. In addition to de�ning

the 6 faces that comprised the single block grid, ten other matching faces had to be generated

(Fig. 18). The grid generation time for the all boundaries was 120 hours.

The 3D elliptic generation of the multiple block volume grid was more involved, especially

in the control of slope continuity across matching boundaries and cyclic oscillations in grid-

point movement near the matching block boundaries. The 3DMAGGS code did not fair

well with the matching boundaries. Slope continuity across each boundary was obtained

by enforcing orthogonality with a rapid decay rate of the forcing functions into the volume

grid. Due to the non-linear grid-point movements caused by forcing the solver to obtain

slope continuity across matching interfaces, the solver forcing functions had to be averaged

in the wing tip regions and cell sizes at the matching interfaces near the wall had to be

increased. Similar to the single block topology, the forcing functions on the vertical tail

intersections with the symmetry plane and fuselage were also averaged to obtain convergence.

The time required to get the same number of iterations from the elliptic solver as used for the

single block grid was 25.0 CRAY-II CPU hours. Figure 19a shows the grid point movement

residuals, �gure 19b shows the orthogonality source term residuals for each iteration and

�gures 20, 21, 22, and 23 show the same cross-sectional planar grids as shown for the single

block grid.

When the elliptic solver performances are compared, the multiple block volume grid

required fewer iterations to converge than did the single block grid. This may be due to

the matching boundary interfaces giving more de�nition for initial volume grid construction.



X

Y

Z

1 2

3
4

5

6

7

910

8

Figure 18: Interface de�ning surfaces for multiple block Shuttle Orbiter.



0 1000 2000 3000 4000 5000 6000
10-4

10-3

10-2

10-1

100

Maximum Movement

RMS of All Point Movements

Relaxation Change
M

o
ve

m
e

n
t (

in
ch

e
s)

Iteration Number

(a) Grid point movement convergence history.

1000 2000 3000 4000 5000 6000

10-2

10-1

100

101

102

103

M
o

ve
m

e
n

t (
in

ch
e

s)

Maximum Movement

Relaxation Change
RMS of All Point Movements

Iteration Number

(b) Right Hand Side terms convergence history.

Figure 19: Elliptic solver performance for multiple block Shuttle Orbiter.
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Figure 20: Multiple block volume grid for Shuttle Orbiter.



Figure 21: Cross-section #1 of the multiple block volume grid for Shuttle Orbiter.



Figure 22: Cross-section #2 of the multiple block volume grid for Shuttle Orbiter.
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Figure 23: Cross-section #3 of the multiple block volume grid for Shuttle Orbiter.



Although extensive forcing function modi�cations were required to obtain a usable solution,

the volume grid is comparable to the single block topology as shown in �gure 24. The total

grid generation time for the multiple block topology was 160 hours. The break down of the

time required for elements of the grid generation process for each topology is shown in �gure

17. In terms of a 40 hour work week, the single block volume grid would be deliverable 2

weeks earlier than the multiple block grid.
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Figure 24: Representative cross-sectional comparisons between the single and multiple

block topology volume grids.



HL-20

As a �nal illustration of single block grid construction, a grid for the Langley Lifting Body

(HL-20), shown in �gure 25, was generated. Utilizing the subface decomposition method,

the surface of this geometry was sectioned as illustrated in �gure 26. The areas of most

interest in the CFD computation were the canopy region, the chine regions and the windside

of the �n. Grid re�nements for the wall were the most time consuming and extensive because

of the need to model suspected separated 
ow. The de�ning boundaries for the grid lines

emanating from the wall were generated quickly as compared to the wall surface grid. The

time required to generate the de�ning boundaries and block topology was 60 hours.

The volume grid was generated in 6 hours of CRAY-II CPU time, requiring 1000 itera-

tions. Figure 27a shows the grid point movement convergence history for each iteration and

�gure 27b shows the orthogonality source term convergence history. Figure 28 shows a set of

2 representative cross-sections and are expanded in �gures 29 and 30. This volume grid did

not require any forcing function modi�cations, and was solvable using an initial relaxation

parameter of .6 followed by a switch to 1.0 after 200 iterations as indicated by the jump in

residuals in �gures 27a and 27b. The total engineering time required to develop this volume

grid was 70 hours.



Figure 25: HL-20 con�guration wall surface used for volume grid generation.
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Figure 26: HL-20 Subface decomposition used to construct the vehicle's surface grid.
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(a) Grid point movement convergence history.
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(b) Right Hand Side terms convergence history.

Figure 27: Elliptic solver performance for the single block HL-20.
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Figure 28: Single block volume grid for HL-20.



Figure 29: Cross-section #1 of the single block volume grid for HL-20.



Figure 30: Cross-section #2 of the single block volume grid for HL-20.



Conclusions

The data presented shows single block volume grid construction about complex aerody-

namic con�gurations is more e�cient than multiple block topologies. The subface decom-

position method adds di�culty to the de�nition of the six faces in a single block volume

grid. This obstacle is outweighed by the savings in both user and computer resources. The

single block method, enables the volume elliptic grid generator to determine the transitions

between complex geometry and the surrounding 
ow�eld domain. By allowing the ellip-

tic solver to determine these transitions, the amount of knowledge required for blocking

strategies is minimized which reduces the time required to generate a CFD grid.
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